Introduction

SimulaMath module is built on top of the scientific Python packages like Numpy, Scipy, Sympy, and Mpmath.

Special Simula Syntax

  • Fractions: on simula, the result of the division of two Integers is a fraction. But on Python, it is a float number.

    simula : 2/3
    2/3
    simula : 4/10
    2/5
    simula : 1/2 + 1/5 + 3/5
    13/10
    simula : int(1)/int(2)
    0.5
    
  • Multiplication: the multiplication under simula is « * » as in Python.

    simula : x = 2; x
    2
    simula : 3*x
    6
    

    There are some special cases of multiplication.

    When a number is followed by a variable, it means multiplication.

    simula : x = 2; x
    2
    simula : 3x
    6
    simula : 5x -2
    8
    

    When a number is followed by an open parenthesis « ( », it means multiplication.

    simula : x = 2; x
    2
    simula : 3(x+2)
    12
    simula : 5(2x-1)
    15
    

    When a closed parenthesis « ) » is followed by an open parenthesis « ( », it means multiplication.

    simula : x = 3; x
    3
    simula : (x-1)(x+2)
    10
    simula : 5(2x-1)(x-1)
    50
    
  • Power: the power under simula is « ^ » or « ** » as in Python.

    simula : 2^3
    8
    simula : x = 3; 2x^2
    18
    simula : (x - 1)(2x^3 -10)
    88
    

    Remark : The symbol « ^ » means bitwise XOR in Python, but on simula, the equivalent operator is « ^^ ».

    EXAMPLE:

    simula : bin(0b100101 ^^ 0b001010)
    '0b101111'
    
  • Factorial : A number followed by « ! » symbol means factorial.

    simula : 3!
    6
    simula : 3! == 6
    True
    simula : 3! != 6
    False
    simula : 6!/4!
    30
    
  • Special Sequences : [a, b, …, n], (a, b, …, n) or {a, b, …, n}.

    simula : [1, 3, ..., 11]
    [1, 3, 5, 7, 9, 11]
    simula : {1, 3, ..., 11}
    {1, 3, 5, 7, 9, 11}
    simula : (1, 3, ..., 11)
    (1, 3, 5, 7, 9, 11)
    simula : [10, 20, ..., 100]
    [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    
  • Symbolic variables:

Symbolic Variables

simula.symbols.var(names, domain=None, parity=None, *, globals=True, **kwargs)

Create symbols and inject them into the global namespace.

Valid kwargs:

  • commutative : True or False

EXAMPLES:

simula : var('x')
x
simula : x
x
simula : var('x, y', "RR")  # x and y are real numbers
(x, y)
simula : x.is_real and y.is_real
True
simula : var('z', "RR*+")  # z is a positive real number
z
simula : z > 0
True
simula : z < 0
False
simula: z > 4
z > 4
simula : n = var('n', "NN"); n  # n is a non-negative integer number
n
simula : n >= 0
True

simula : var('x, y2, ab')
(x, y2, ab)
simula : y2
y2
simula : var(('a', 'b', 'c'))
(a, b, c)
simula : var(['a', 'b', 'c'])
[a, b, c]
simula : var({'a', 'b', 'c'})
{a, b, c}
simula : var('x:z')
(x, y, z)
simula : var('x1:4')
(x1, x2, x3)
simula : xa, yb = var('x((a:b))')
simula : xa
x(a)
Paramètres

globals (bool) –

  • Functions : You can define a function easily on simula like in mathematics.

    simula : x = var('x')
    simula : f(x) = x^2-2x-2; f
    Function defined by x |--> x^2 - 2x - 2
    simula : f(2)
    -2
    simula : f(2x-1)
    -4x + (2x - 1)^2
    simula : y = var('y')
    simula : g(x, y) = x - y + 1; g
    Function defined by (x, y) |--> x - y + 1
    simula : g(x, x)
    1
    
  • Complex numbers: The imaginary unit is represented by I.

    simula : 3-5I
    3-5I
    simula : conjugate(3-5I)
    3 + 5I
    simula : real_part(3-5I)
    3
    simula : im_part(3-5I)
    -5
    

    Python complex numbers are compatible with Simula complex numbers.

    simula : 2-5j
    3-5I
    simula : real_part(2-5j)
    3
    
  • Polynomial ring : You can define a polynomial ring like in Sage.

    simula : R.<x, y, z> = QQ[]
    simula : R
    Multivariate Polynomial Ring in x, y, z over QQ with deglex order
    simula : (x^2-1).factor()
    (x - 1)*(x + 1)
    simula : F.<w> = GF(3)[]; F
    Univariate Polynomial Ring in w over GF(3) with deglex order
    simula : 5w^4+10w^2-2
    2w^4 + w^2 - 2
    
  • Finite Fields : You can define a finite field like in Sage.

    simula : G.<a> = GF(9); G
    Finite Field of 9 elements defined by the quotient of F_3[a] by the ideal <a^2 + 2a + 2>
    simula : a^2
    a + 1
    simula : 7a^3
    2a + 1
    simula : 1/a
    a + 2
    
  • Binary, Octal and Hexadecimal:

    • Python Binary, Octal and Hexadecimal :

    simula : 0b1110
    14
    simula : bin(14)
    '0b1110'
    simula : oct(100)
    '0o144'
    simula : hex(1000)
    '0x3e8'
    
    • Simula Binary, Octal and Hexadecimal :

    simula : Bin(14)
    0b1110
    simula : A = Bin(111); A
    0b1101111
    simula : A.to_list()
    [1, 1, 0, 1, 1, 1, 1]
    simula : A.to_list(10)
    [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
    simula : Bin(14) + Bin(17)
    0b11111
    simula : Bin(14) + Bin(17) == Bin(31)
    True
    simula : Bin(bin(14))
    0b1110
    simula : Oct(1000)
    0o1750
    simula : Hex(1000)
    0x3e8
    simula : Hex(100) + Hex(120) == Hex(220)
    True
    

Simula Syntaxe as Python

Since SimulaMath language is based on Python, 99% of Python valid code work also on SimulaMath.

  • Float numbers:

    simula : 7.8
    7.8
    simula : 6.
    6.0
    simula : .5
    0.5
    
  • Exponents:

    simula : 2e3
    2000.0
    simula : 3e-4
    0.0003
    simula : 3e+4
    30000.0
    
  • Lists:

    simula : seq = [1,2,3,4,5]; print(seq)
    [1, 2, 3, 4, 5]
    simula : seq[0]
    1
    simula : seq[:2]
    [1, 2]
    simula : seq[-2:]
    [4, 5]
    

    Comprehension of list

    simula : [i^2 for i in range(10)]
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    simula : x = var('x'); f(x) = x^2-4x-1
    simula : [f(i) for i in range(15)]
    [-1, -4, -5, -4, -1, 4, 11, 20, 31, 44, 59, 76, 95, 116, 139]
    
  • Tuples:

    simula : seq2 = (1,2,3,4,5); print(seq2)
    (1, 2, 3, 4, 5)
    simula : seq[-1]
    5
    simula : seq[:2]
    [1, 2]
    simula : seq[-2:]
    [4, 5]
    
  • Sets:

    simula : A = {1,2,3,4,5, 10, 15}; print(A)
    {1, 2, 3, 4, 5, 10, 15}
    simula : len(A)
    7
    simula : B = {-2, 4}; B
    {4, -2}
    simula : A | B
    {1, 2, 3, 4, 5, 10, 15, -2}
    simula : A & B
    {4}
    

    Comprehension of Set

    simula : {i^2 for i in range(10)}
    {0, 1, 64, 4, 36, 9, 16, 49, 81, 25}
    simula : x = var('x'); f(x) = x^2-4x-1
    simula : {f(i) for i in range(15)}
    {4, 59, 11, 44, 76, 139, 20, 116, 95, -5, -4, -1, 31}
    
  • Strings:

    simula : word = "SimulaMath"; word
    'SimulaMath'
    simula : word.upper()
    'SIMULAMATH'
    simula : word.isalpha()
    True
    simula : word[2:]
    'mulaMath'
    simula : "Simula" "Math"
    'SimulaMath'
    simula : a, b = 2, 8
    simula : "We get a = {} and b = {}".format(a, b)
    'We get a = 2 and b = 8'
    simula : f"We get a = {a} and b = {b}"
    'We get a = 2 and b = 8'
    simula : f"We get a = {2a} and b = {b^2}"
    'We get a = 4 and b = 64'
    
  • Dictionaries:

    simula : dico = {'A': 0, "B": 1, 3: (1,2,3)}; print(dico)
    {'A': 0, 'B': 1, 3: (1, 2, 3)}
    simula : list(dico.keys())
    ['A', 'B', 3]
    simula : list(dico.values())
    [0, 1, (1, 2, 3)]
    simula : del dico['A']; dico
    {'B': 1, 3: (1, 2, 3)}
    simula : dico["S"] = "SimulaMath"; dico
    {'B': 1, 3: (1, 2, 3), 'S': 'SimulaMath'}
    

    Comprehension of Dictionary

    simula : {i : i^2 for i in range(10)}
    {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
    simula : x = var('x'); g(x) = 3x-1
    simula : {2m: g(m) for m in range(15)}
    {0: -1, 2: 2, 4: 5, 6: 8, 8: 11, 10: 14}
    

Note that conditions, loops (for loop, while loop) and functions syntax on SimulaMath and Python are the same.

  • Conditions

    simula : N = 194
    simula : if N % 7 == 0:
    . . . . . . :    print(f"{N} is a multiple of 7")
    . . . . . . : else:
    . . . . . . :     print(f"{N} is not a multiple of 7")
    . . . . . . :
    194 is not a multiple of 7
    
  • Loops
    simula : for i in range(9):
    . . . . . . :    print(2i)
    0
    2
    4
    6
    8
    10
    12
    14
    16
    simula : for elt in [0, 5, ..., 30]:
    . . . . . . :    print(elt)
    0
    5
    10
    15
    20
    25
    30
    
  • Functions
    simula : def mean(L):
    . . . . . . :    return sum(L)/len(L)
    . . . . . . :
    simula : mean([1,2,3,4,5])
    3
    simula : mean([3,4])
    7/2
    

For more details on Python syntax, see the Python Doc

SimulaMath Editor

SimulaMath has a basic editor which allow you to save and load files with extension .sim and .py.

../_images/editor.PNG